Ziman Wu

I’m working on understanding the early diagenesis processes of marine sediments and figuring out how recrystallization changed major geochemistry records. My work for now is studying shallow carbonate sediments collected from Bahama and processing simulation lab experiments and would follow with modeling building.

Yiming Zhang

I am a 4th year PhD student at the Earth and Planetary Science department. I integrate original field observations with laboratory data sets to reconstruct the history of Earth’s magnetic field and tectonic plate configuration. In particular, I study Proterozoic intrusive rocks to gain new insights into the long-term evolution of the intensity of Earth’s magnetic field. I also set up a Quantum Diamond Microscope at UC Berkeley Paleomagnetism Laboratory which enables us to characterize rock magnetic properties at micron-scale. Currently I am also working on integrating paleomagnetic data with thermochronology data to study the uplift history of the Adirondack Mountains, NY.

Marianne Cowherd

I’m a third year PhD student in Environmental Science, Policy, and Management, where I work with Manuela Girotto and Scott Stephens on post-wildfire snow hydrology in the Sierra Nevada. I also work on global climate modeling of future snow defecits and hydrology applications of machine learning methods. I like running, biking, and trying new foods.

Anthony Joseph Fuentes

I am the first of my family to attend college and as such I am particularly motivated to help broaden the participation of underrepresented groups in STEM. The Cretaceous-Paleogene boundary (KPB) is associated with one of the five largest mass extinction events in the geologic record and is typified by the rapid loss of taxa such as the non-avian Dinosaurs. The extinction may serve as an analog to the modern ecological crisis. I will work to develop a high-temporal resolution record of the paleoenvironmental and palaeoecological turnover across the KPB using plant and bacterial biomarkers preserved in low grade coals (lignites) in the Hell Creek region of Montana.

Michelle Devoe

I’m a 4th year PhD student in the Earth and Planetary Science Department. I’m developing a methodology to decipher the stress history of Earth’s crust.

Pietro Federico Vannucci

Hi, I’m Pietro! I’m originally from Milan, Italy, but I’ve spent most of my life (from elementary school to university) in St. Louis, MO. I moved out to the Bay to attend a Master’s program here at Cal in Civil and Environmental Engineering and I’ve since completed it and begun to work on my PhD. My research is at the intersection of Environmental Engineering, Chemistry, and Public Health. I work to better understand air quality, both in terms of the processes that drive and control pollution, and the sensors/data analysis techniques we can use to better make sense of measurements. In my spare time, I like to be outside, whether that is cycling, playing tennis, golf, or soccer

Tanja Kovacevic

Tanja (she/her) is a Ph.D. candidate in the Earth and Planetary Science Department at U.C. Berkeley. She used computer simulations to investigate thermodynamic material/transport properties of water-rich exoplanet interiors. Materials within planets are subjected to extreme pressures and temperatures and highly accurate ab-initio computer simulations offer us a glimpse into their interiors. She is currently working on calculating the equation-of-state for rock and ice mixtures (i.e. the miscibility curve).
On a personal note, Tanja is a refugee and a first-generation college student. She finds it imperative to continue mentorship and outreach efforts as she pursues a scientific career.

Quentin Eric Nicolas

My project aims to develop a quantitative understanding of precipitation around tropical mountains. Our first step is to develop a physics-based theory for the setting where a steady flow impinges perpendicularly on a mountain ridge; analogous to the Western Ghats of India, during the summer Monsoon. Future developments will consist in complexifying the problem to conform better to real-world mountains, where a complete atmospheric circulation can develop. This work will allow better preparation of the societies depending on freshwater input from mountains to future climate changes.

Julia DeMarines

Julia DeMarines is an Astrobiologist and science educator. She is currently a PhD student in UC Berkeley’s Earth and Planetary Science dept doing joint research with the Berkeley SETI Research Center and the Blue Marble Space Institute of Science on a project attempting to determine what we “sound” like to an alien observer.  She also teaches with the international team of scientists/educators called the Ad Astra Academy. She is a 2019 AGU Voices for Science advocate, a National Geographic Explorer and a 2018 Grosvenor Teacher Fellow.  She holds a Master’s degree in Space Studies from the International Space University and a Bachelor’s in Astronomy from the University of Colorado. Her research involves biosignature and techno signature detections, the ethics behind messaging extraterrestrials, and the impact of educational activities. Julia also runs her own outreach events called  “Space in Your Face!” – a space variety show involving comedy, local artists, and cover songs. When she’s not doing science and communication she can be found cracking Uranus jokes, trying not to kill her plants, trail running, and hanging with her cat, Bella.

Sevan Adourian

I was born to a French-Armenian family of teachers living in the suburbs of Paris. I was accepted to UCB PhD program in Earth and Planetary Science for the Fall semester of 2017.

Complex interactions between different parts of Earth’s mantle — 3000 km of solid rock beneath our feet — push and pull tectonic plates through mantle convection where hot rock rises and cold rock sinks on timescales of 10s-100s millions of years. To understand processes at the surface, particularly earthquakes and volcanic eruptions, a deeper and wider understanding of Earth’s force balance must be obtained. My project team will use a combined approach of a theoretical framework and numerical modeling in order to retrieve a density model for the deep mantle, which is one of the missing pieces of the global mantle circulation that governs most of the surface tectonic processes.